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Abstract

A general automatic optimization procedure coupled to a finite element induction heating process simulation has

been developed. The mathematical model and the numerical methods are presented along with results validating the

model. The first part of this paper presents the direct induction heating mathematical model, the related main numerical

choices and especially the ultra-weak coupling procedure. The general optimization problem is then presented with the

full detailed transposition of the ultra-weak coupling procedure to the adjoint problem. Numerical results provided at

the end prove the efficiency and robustness of the adjoint model in optimizing induction heating processes.

� 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

Induction heating processes have become increasingly used in these last years in industry. The main

advantages of using these processes when compared to any other heating process (gas furnace. . .) are,
among others, their fast heating rate, good reproducibility and low energy consumption [1]. The induction

heating process basically consists in transmitting by electromagnetic means, energy from a coil through
which an alternative current is circulating. Induced currents in the conductive part due to the well-known

Foucault law then heat the workpiece thanks to the Joule effect. Induction heating processes are mainly

used either at low frequencies (around 50 Hz), usually in order to reach a temperature distribution as

uniform as possible within the material before any forming process, or at much higher frequencies (104–106

Hz) in order to heat very locally near the surface, usually for heat treatments [2].

Most induction heating processes are set up using engineering experience and a trial-and-error procedure

in order to achieve the corresponding goal (grain size control, uniform prescribed temperature, hardness

Journal of Computational Physics 187 (2003) 68–94

www.elsevier.com/locate/jcp

*Corresponding author. Tel.: +33-4-93-95-75-86; fax: +33-4-92-38-97-52.

E-mail address: Yann.Favennec@ensmp.fr (Y. Favennec).

0021-9991/03/$ - see front matter � 2003 Elsevier Science B.V. All rights reserved.

doi:10.1016/S0021-9991(03)00081-0

mail to: Yann.Favennec@ensmp.fr


map, etc.). Induction heating process simulation, which couples electromagnetic and heat transfer equa-

tions, can be of great help for a more in depth understanding of occurring physical phenomena. So far,

various numerical models have been developed coupling electromagnetism and heat transfer. Most models

involve the well-known finite element approach [3–5] or mixed finite element and boundary element ap-

proaches [6–8]. Even though mixed methods are interesting due to their inherent ability to take into account

open domains and inductor displacements, the global finite element approach has been preferred since it

involves sparse matrices (leading to reductions in terms of CPU time and memory requirements) and is

more suited for parallel computing. Most authors use the harmonic approximation, assuming that all
electromagnetic fields are sine waves when the input current is a sine wave. This approximation, valid when

considering linear magnetic materials, can yield to large errors when dealing with highly ferromagnetic

materials [3,9]. That is the reason why the time-dependent formulation has been preferred. Time-dependent

integration being very time consuming when using a traditional weak coupling between all problems, the

ultra-weak strategy has been developed. The complete model developed in our laboratory, well described in

[10], is extended here.

The use of a direct induction heating process simulation code can be a first step in optimizing the

global process. Nevertheless, in order to save again on time computation and improve accuracy, general
numerical models have to be developed in order to automatically optimize the process with respect to

any industrial goal as long as they deal with temperature evolutions anywhere within the part to be

heated. Very few optimization models (but [11–13]) applied on coupled magneto-thermal problems can

be found in the literature. Models presented in [11,12] use the harmonic approximation and consider

that electromagnetic and heat conduction problems are uncoupled. The same approach can also be

found in the control of ultrasound surgery [14,15]. In [13], the optimization procedure is based on a

zero order method leading to a too high computational cost. To go much further in induction opti-

mization, this paper presents the optimization of induction heating processes when dealing with any
material (with nonlinear physical properties) and using a gradient-type method based on the completely

coupled formulation between both time-dependent nonlinear electromagnetic and heat transfer prob-

lems. Particular attention is given in the transposition of the ultra-weak coupling from the direct to

the adjoint problem. Another major difference between [11] and this paper resides in the fact that the

model presented here optimizes transient trajectories while [11] discusses only the final steady-state

problem.

The paper is organized as follows. In Section 2, we review the direct induction heating modeling. The

continuous equations as well as the space finite element discretization and the time integration procedure
are presented. In Section 3, we formulate the optimization problem and derive the solution. In Section 4, we

present results from non-trivial simulations. Numerical tests performed on several different objectives show

the very good applicability of the developed optimization algorithm. Section 5 is dedicated to conclusions

and extensions of the proposed approach.

2. The direct induction heating model

The mathematical model developed for induction heating normally involves three main physical phe-

nomena related to electromagnetism, heat transfer and solid mechanics [10]. As far as this paper is con-

cerned, we shall introduce only electromagnetism and heat transfer since objectives to be reached in the

optimization procedure deal only with temperature evolutions through the control of electromagnetic

process parameters. We have chosen to carry out a complete finite elements approach for both electro-

magnetic and thermal computations. For each model, proper continuous equations are written with proper

applied boundary conditions. Space and time discretizations are then explained. A validation of the direct

model is then performed.
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2.1. The electromagnetic model

The global system of equations modeling electromagnetic wave propagation is based on the four

Maxwell equations:

~rr �~BB ¼ 0; ð1Þ

~rr � e~EE ¼ 0; ð2Þ

~rr� ~EE ¼ � o~BB
ot

; ð3Þ

~rr� ~HH ¼~jjþ oe~EE
ot

; ð4Þ

where~BB is the magnetic field, ~HH is the magnetic field, e is the dielectric constant, ~EE is the electric field,~jj is the
electric current density associated with free charges, r ¼ ðo=ox; o=oy; o=ozÞ and � denotes the vector

product. This system of equations is coupled with relations associated to material properties:

lðT ; j~HH jÞ ¼ o~BB

o~HH
; ð5Þ

~jj ¼ rðT Þ~EE; ð6Þ

where l is the differential magnetic permeability, r is the electrical conductivity and T is the temperature.
The electromagnetic resolution consists in calculating fields, ~EE ¼ ~EEðr; tÞ, ~BB ¼ ~BBðr; tÞ, ~HH ¼ ~HHðr; tÞ and
~jj ¼~jjðr; tÞ at any location r and time t that satisfy all relations (1)–(6). The standard procedure consists in
writing a single second-order wave propagation-like equation. When solving the electromagnetic problem

using the electrical field for instance, the procedure is the following. By dividing (3) by the differential

magnetic permeability (5) and taking its rotational on both sides, we first get

~rr� 1

l
~rr

�
� ~EE

�
¼ �~rr� o~HH

ot
¼ � o

ot
~rr
�

� ~HH
�
: ð7Þ

Substituting (4) in (7) then gives

o

ot
~jj

 
þ oe~EE

ot

!
þ ~rr� 1

l
~rr

�
� ~EE

�
¼ 0: ð8Þ

The total current density~jj being the sum of the induced currents r~EE and the imposed one ~JJs, (8) becomes,
introducing the Ohm law (6)

e
o2~EE
ot2

þ r
o~EE
ot

þ ~rr� 1

l
~rr

�
� ~EE

�
¼ � o~JJs

ot
: ð9Þ

With the electrical field as the unknown, the electromagnetic problem consists then in calculating
~EE ¼ ~EEðr; tÞ satisfying (9) along with the null divergence condition (2). In the same manner, the electro-
magnetic problem consists in, when using the magnetic field ~HH ¼ ~HHðr; tÞ as the unknown, calculating
~HH ¼ ~HHðr; tÞ satisfying (10) along with its null divergence condition (1)
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e
o2~HH
ot2

þ r
o~HH
ot

þ ~rr� 1

l
~rr

�
� ~HH

�
¼ � o~JJs

ot
: ð10Þ

In axis-symmetrical configurations, using a cylindrical coordinate system ½~eer;~eeh;~eez�, electromagnetic fields
do not depend on the angular coordinate (o � =oh ¼ 0) and it is shown from (6) that when the current

density circulates in the ortho-radial direction (~JJS ¼ JSðr; zÞ~eeh), the electrical field ~EE ¼ Ehðr; zÞ~eeh is then

reduced to a single non-zero component in the ortho-radial direction with the null divergence condition
implicitly taken into account [16,17]. Developing (9) in the cylindrical coordinate and taking into account

of above remarks, the problem is then to find E ¼ Eh r; zð Þ satisfying

e
o2E
ot2

þ r
oE
ot

� ~rr � 1

l
~rrE

� �
þ 1

l
E
r2

� o

or
1

l

� �
E
r
¼ � oJS

ot
; ð11Þ

where the last term in the left-hand side of (11) is usually neglected [5] even though it is numerically shown

[17] that it affects consequently the results when dealing with magnetic materials. The input current density

being most of the time a sine wave, this writes JS ¼ J0 sinð2pftÞ, where J0 is the amplitude and f is the
frequency. Next, a very standard approximation consists in neglecting the displacement currents (last term
in the right-hand side of (4)). The general domain of validity when using this so-called magneto-quasi-static

approximation can be found in any electromagnetism handbooks [18], and is given explicitly for induction

heaters in [10]. Eventually, the electromagnetic problem consists in calculating E ¼ Ehðr; tÞ satisfying (12)

r
oE
ot

� ~rr � 1

l
~rrE

� �
þ 1

l
E
r2

� o

or
1

l

� �
E
r
þ 2pfJ0 sinð2pftÞ ¼ 0: ð12Þ

It should be noted that Eq. (12) is a diffusion-like equation instead of the wave propagation-like equation

(11). Two physical parameters, namely the electrical conductivity r and the magnetic permeability l, are of
concern in (12). Both depend on temperature. For nonlinear ferromagnetic materials, the magnetic per-

meability also depends on the magnetic field strength. General formulations for linear and nonlinear

properties are presented in [19]. Since most magnetic materials present nonlinearities with respect to the

magnetic field [20], it is usually convenient to have a proper linearization transfer formulation from non-

linear to the linear formulation. This is also presented in [19,21]. It is shown in [22] (resp. [10]) how the
nonlinearity is handled when using the magnetic field (resp. electric field) as the state variable. It is well

known that all electromagnetic fields strengths decrease as the inverse of the source current distance to

reach zero at infinity. When using the standard finite element method, it is necessary to take into account a

closed domain using an artificial border. In axis-symmetrical cases, a null Dirichlet boundary condition on

the symmetry axis Ce
0 is prescribed to the electrical field and, to avoid artificial reflections or external

borders Ce � Ce
0, an absorbing-type Robin-like condition is prescribed [4,12,23] (see Fig. 1).

Fig. 1. Schematic axis-symmetrical representation of the global domain of study Xe ¼ Xpart [ Xinductors [ Xair and of the border Ce.
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2.2. The heat transfer model

Eddy currents derived from the electromagnetic model induce the heat dissipated within the workpiece

due to Joule effects. Temperature evolution within the workpiece is governed by the classical heat transfer

equation

qC
oT
ot

� divðk~rrT Þ ¼ rE2; ð13Þ

where q is the material density, C is the specific heat, k is the thermal conductivity, and rE2 is the heat
source term due to eddy currents [2]. The specific heat and thermal conductivity are also temperature

dependent. Different kinds of boundary conditions for temperature or its normal derivative can be pre-

scribed at interfaces, listing convection and radiation between the part and the air on Ct
0 (14) and prescribed

heat flux on Ct
1 (15) [24]. We can also consider a prescribed temperature on Ct

2 (16):

�k~rrT �~nn ¼ hðT � TextÞ þ eemirSteðT 4 � T 4extÞ; ð14Þ

�k~rrT �~nn ¼ Uprescribed; ð15Þ

T ¼ Tprescribed; ð16Þ

where~nn is the outward unit normal vector, h is the convection coefficient, eemi is the material emissivity, rSte
is the Stephan constant and Text is the room temperature. Although the heat conduction equation (13) is
valid anywhere in the domain Xt  Xe, one may choose to solve it only on the workpiece to be heated

(Xt ¼ Xpart) – thus enabling easy enforcement of special boundary conditions such as convection and ra-
diation for instance. Locations of boundaries Ct

0, C
t
1 and Ct

2 are given as an example in Section 4.

2.3. Integral formulations and space discretization

In order to establish weak formulations of (11) and (13), we multiply them, respectively, by test functions

w and u belonging to the functional space V and W that respect, respectively (17) and (18):

V ¼ w 2 H 1ðXeÞ;w
r
2 L2ðXeÞ;w

�
¼ 0 on Ce

O;
ow
oh

¼ 0
�
; ð17Þ

W ¼ u 2 H 1ðXtÞ;u
�

¼ 0 on Ct
2;
ou
oh

¼ 0
�
; ð18Þ

with H 1ðXÞ ¼ fw;u 2 L2ðXÞ;rw;ru 2 L2ðXÞg, and integrate them on the whole considered domains.

After using the Green theorem, one gets the following Cauchy–Dirichlet–Neumann problems from which
existence and uniqueness of solutions can be proved [25]

Z
X

r
oE
ot

w þ
Z

X

1

l
~rrE � ~rrw þ

Z
X

1

lr2
E � w þ

Z
X

1

lr
o

or
ðEwÞ þ

Z
X
2pfJ0 cosð2pftÞw ¼ 0 8w 2 V ; ð19Þ

Z
X

qC
oT
ot

u þ
Z

X
krT � ru þ

Z
Ct
0

hT � u �
Z

X
rE2u �

Z
Ct
1

Uprescribed � u �
Z

Ct
0

hText � u ¼ 0 8u 2 W ;

ð20Þ
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where the radiation boundary condition (14) has been linearized with respect to temperature pointing out

that eemirSteðT 4 � T 4extÞ ffi eemirSteðT �2 � T 2extÞ � ðT � þ TextÞðT � TextÞ, where T � is an approximation of tem-

perature (usually temperature of the previous time step). The generalized convection coefficient h involved
in (20) and afterwards thus encompasses the classical convection coefficient as well as the linearized ra-

diative condition [24].

Weak formulations (19) and (20) have now to be discretized in space. Functional spaces V and W are

classically approached by, respectively, space discretized V h and W h, tests functions w and u are ap-

proached by wh and uh and unknowns E and T by Eh and T h. Choosing a proper basis of the discretized
space provided by the shape functions Ni associated to each node i of the quadratic triangular mesh, one
gets the following linear systems, where E and T stand for the discretized versions Eh and T h from now

onwards:

fReg ¼ ½Ce� oE
ot

ðtÞ
� �

þ ½Ke�fEðtÞg � fBeg ¼ f0g; ð21Þ

where

½Ce�ij ¼
Xnb:elts
elt¼1

Z
elt

rNjNi dr;

½Ke�ij ¼
Xnb:elts
elt¼1

Z
elt

1

l
rNj � rNi dr

�
þ
Z
elt

1

lr2
NjNi dr þ

Z
elt

1

lr
� o
or

ðNjNiÞ dr
�
;

fBegi ¼
Xnb:elts
elt¼1

Z
elt

�
� 2pfJ0 cosð2pftÞ � Ni dr

�
;

ð22Þ

and

fRtg ¼ ½Ct� oT
ot

ðtÞ
� �

þ ½Kt�fT ðtÞg � fBtg ¼ f0g; ð23Þ

where

½Ct�ij ¼
Xnb:elts
elt¼1

Z
elt

qCNjNi dr;

½Kt�ij ¼
Xnb:elts
elt¼1

Z
elt
krNj � rNi dr

"
þ
Z
oelt\Ct

0

hNjNi dr

#
;

fBtgi ¼
Xnb:elts
elt¼1

Z
elt

rE2 � Ni dr

"
þ
Z
oelt\Ct

1

UprescribedNj dr þ
Z
oelt\Ct

0

hTextNj dr

#
:

ð24Þ

2.4. Time discretization and coupling strategy

The space semi-discretized electromagnetic and thermal equations ((21), (22)) and ((23), (24)) must then

be integrated in time. For accuracy reasons, we have selected second-order time step finite difference

schemes detailed in [24,26] and recalled here below. Note that integration schemes are alike for both

electromagnetic and thermal computations. Hereafter, variable X represents any of the main state variables
that are the electrical field E or temperature T , and superscript X stand for either e or t with no misun-
derstanding. As a first stage, one defines a time t� as
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t� ¼ a1ðt � dtÞ þ a2t þ a3ðt þ dtÞ; ð25Þ

with

a1 þ a2 þ a3 ¼ 0: ð26Þ

The field X � at time t� and its time derivative are approximated by

X � ¼ a1X t�dt þ a2X t þ a3X tþdt; ð27Þ

oX �

ot
¼ c

X tþdt � X t

dt
þ ðc � 1ÞX

t�dt � X t

dt
: ð28Þ

System (29) is solved at time t� for X � with:

c
a3dt

½CX ��
�

þ ½KX ��
�
fX �g ¼ fBXg� þ c1½CX ��fX tg þ c0½CX �� X t�dt

� �
;

c1 ¼
c
dt

þ c � 1
dt

þ ca2
a3dt

;

c2 ¼
ca1
a3dt

� c � 1
dt

:

ð29Þ

Matrices are then linearized and do only depend on their values at times t and t � dt [27]

½C�� ¼ ða1 � a3Þ½C�t�dt þ ða2 þ 2a3Þ½C�t�dt: ð30Þ

The corresponding field at time t þ dt is then computed

fXgtþdt ¼ 1

a3
ðfXg� � a1fXgt�dt � a2fXgtÞ: ð31Þ

The choice of coefficients a1, a2, a3 and c greatly influences convergence [26]. Thus, several distinct schemes
have been tested. All numerical results presented in [17] are briefly recalled here. Comparative studies have
been performed on the test case (geometry, process and physical parameters) given by [5]. Fig. 2 presents

the electrical field evolution on one location of the workpiece surface. It is shown that these second-order

schemes which tend towards explicit schemes present high oscillations while the Dupont scheme is much

more stable. As a consequence, this latter scheme converges much easier and faster. Although the time

integration scheme choice is fundamental for the electromagnetic computation efficiency, this choice is less

restrictive for heat transfer computations [17]. Therefore, the Dupont scheme (a1 ¼ 1=4, a2 ¼ 0, a3 ¼ 3=4
and c ¼ 1) has been chosen for both computations.
Both equations are solved in an incremental way. Theweak coupling is the usual way for integrating in time

both coupled equations. The general procedure is the following. At a given time step tn ¼ n � dt, n ¼ 1; . . . ;N ,
with N � dt ¼ tf , one first calculates the electromagnetic field En ¼ Eðr; tnÞ at a fixed known temperature field
T n�1 ¼ T ðr; tn�1Þ, then, as the second step, one calculates the temperature T n ¼ T ðr; tnÞ using the pre-calcu-
lated fixed electromagnetic field En. These two sub-systems have to be solved N times in order to cover the
whole time range ½t0; tf �. The global direct problem resides thus in solving, where un are the controls:

ReðEn; unÞ ¼ 0
RtðEn; T nÞ ¼ 0

�
8n ¼ 1;N : ð32Þ

Even though weak couplings are generally interesting due to their inherent high integration accuracy, the

total number of integrations can become extremely high when considering high frequency. Indeed, the
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characteristic time step scale for the thermal problem is of the order of magnitude of the second while the

electromagnetic one is of the order of a fraction of an electromagnetic period and thus can reach 10�6–10�9

s. In principle, both equations should be integrated using the same time step. One should thus consider the

smaller of both. So, when discretizing electromagnetic periods byN steps (usually 64), one has to compute
N � f times both equations of (32) per second of heating. This such high number of integrations leads to
practical unfeasibility. A preferred ultra-weak coupling is performed.

Induction heating processes lasting several seconds in practice, temperature evolutions within a range

related to an electromagnetic period s or even several periods are very small and thus evolutions of all
physical parameters are also negligible. As a consequence, for the small considered time interval, a periodic

input current density JSðtÞ and thus a periodic loading vector BeðtÞ implies a periodic response EðtÞ. One
then chooses a thermal discretization ½t0; tf � ¼ [½tk�1; tk�; k ¼ 1; . . . ;K such that within each interval, evo-
lutions of all physical parameters are small. Doing so, computation of the electromagnetic problem can be

performed for each step k from time tk�1 to tk�1 þ s with a time step being still a fraction of the period s. The
response is then extrapolated during the rest of the intervals, namely within ½tk�1 þ s; tk�. The heat transfer
problem is then integrated with the chosen time step jtk � tk�1j with a time averaged signal over the elec-
tromagnetic period ~EE2ðtkÞ in order to compute BtðtÞ. Formalizing, the ultra-weak coupling leads in solving
both coupled problems by (33) as schematically shown in Fig. 3. It is to be noted that the ultra-weak

coupling procedure has previously been validated in [10]

8k ¼ 1;K ReðEn; unÞ ¼ 0 8n ¼ 1;N ;

Rtð ~EE2k ; T kÞ ¼ 0:

(
ð33Þ

2.5. The moving inductors case

Since the finite element discretization is used, there are mainly two ways to simulate moving inductors.

The first one is the remeshing use as it is done in forming processes simulation [28,29]. Remeshing

Fig. 2. Temporal evolution of the electrical field on the workpiece surface for several time integration schemes (Crank–Nicholson,

Lees, Dupont).
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processes being very time consuming, we have preferred the following procedure where the area where

the inductor is moving through is initially defined and meshed separately (see Fig. 16). The electro-

magnetic properties of this area are moved back and forth from air properties to inductor material

properties. The inductors are moved virtually through an almost ‘‘continuous’’ change of physical

Fig. 3. The general ultra-weak coupling principle. At thermal intervals k ¼ 1; 2; 3 the electromagnetic field is computed with its
characteristic time step dt ¼ s=64 during only one full period s. Matrices Ce;Ke and the vector Be for electromagnetic computation

are assembled using the current step temperature T k ¼ T ðr; tkÞ. The electromagnetic field is then extrapolated until the next ther-
mal step.

Fig. 4. Comparison of our finite element time-dependent model with the harmonic mixed boundary element–finite element model.

Both give the same evolution for the electrical field as a function of the radius.
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properties and location of electromagnetic source terms. The major advantage of using this method is

that it enables an accurate simulation of the process without any mesh distortions, and thus avoids

remeshing problems.

2.6. Conclusion

The direct modeling of induction heating processes presented upwards has been first confronted to an

analytical solution given by [5], then to the numerical code developed at the laboratory FS-LNMS in
Slovenia which is based on a mixed finite element–boundary element method [30,31]. Confrontation tests

performed on the geometry and linear magnetic parameters given by [5] are presented in Fig. 4. Next, the

comparison between the calculated electrical field evolution in the inductor surrounding a ferromagnetic

cylindrical piece and the corresponding measured current intensity [32] (see Fig. 5) shows the robustness of

the developed numerical model.

Fig. 5. Temporal evolution: (a) evolution with respect to time of the experimental intensity in the coil; (b) evolution with respect to

time of the numerically computed electrical field in the part.

Y. Favennec et al. / Journal of Computational Physics 187 (2003) 68–94 77



3. The optimization problem

3.1. Formulation of the optimization problem

Direct modeling of induction heating processes enables the determination of temperature T ðr; t; utÞ at
any location r 2 X and at any time t for a given set of process parameters u. The process parameters are
the frequency f and the amplitude J0 of the input source current density JS ¼ J0 sinð2pftÞ. The inductor
velocity v with respect to the workpiece to be heated can also be a process parameter. All process
parameters are stationary in time, so u ¼ fðf ; J0; vÞ 2 Rþ � Rþ � Rþg. We recall that induction heating
processes are mainly used either for pre-heating prior to forming operations in order to reach a tem-

perature as uniform as possible within the part, or for heat treatment applications in which case tem-

perature has to follow a precise path in space and time [1]. The optimization problem consists in finding

controls u such that calculated temperature T ðr; t; uÞ are as close as possible to optimal ones denoted
T optðr; tÞ. The goal is then to minimize, in the mean squared sense, the discrepancy between calculated and
optimal temperature. The discrepancy ĴJ , often called cost or objective function, is defined in the general
continuous case as

ĴJðuÞ ¼ 1
2

Z tf

t0

Z
Xpart

ðT ðr; t; uÞ � T optðr; tÞÞ2 dr dt þ 1
2

Z
Xpart

ðT ðr; tf ; uÞ � T optðr; tf ÞÞ2 dr; ð34Þ

where both terms in the right-hand side of (34) have a different meaning. The first term used to display the

objective function time integration has been used for instance by [33] for an inverse heat conduction

problem, by [34] for minimizing the energy spent during a forming process, and also by [35] for a shape
optimization problem of a waveguide antenna. In our case, this first term will be used when heat treatment

applications are dealt with. The second term, based on the final temperature field, has been used for in-

stance by [11] in shape optimization in induction heating, and also by [35] when dealing with the control of

phase volume fractions at the end of a laser hardening process. This term is used in our case for dealing with

pre-heating applications. Temperature T ðr; t; uÞ being calculated numerically, the continuous objective
function given in (34) has to be written in its space and time discretized form. Moreover, the objective

function may be integrated only at predefined times (tk; k ¼ 1; . . . ;K; 06 tk 6 tf ) and on time varying space
domain of interest XoptðtkÞ � Xpart. Thus, the discretized objective function JðuÞ writes

JðuÞ ¼ 1
2

XK
k¼1

Xnb:elt
elt¼1

Xnb:int
int¼1

if int2Xoptðtk Þ

ðT ðrint; tk; uÞ � T optðrint; tkÞÞ2xintnint; ð35Þ

where xint is the weight associated to the integration point int, and nint is the binary weight associated to
time tk. The latter weight equals 0 or 1 depending on whether or not the functional J is integrated at this
time. Eventually, the optimization problem consists in finding controls u that minimize the functional JðuÞ
under the constraints ReðE; uÞ ¼ 0 and RtðE; T Þ ¼ 0, formally

Find u such that JðuÞ ¼ min
ReðE;uÞ¼0;
Rt ðE;T Þ¼0

JðuÞ: ð36Þ

3.2. The Lagrangian method

A large number of methods can be found in literature to solve such optimization problem. One can
roughly separate them in two kinds: zero order methods and gradient-type methods. Zero order methods
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do not use any information concerning the objective function first- or higher-order derivatives and thus

usually converge to the global minimum. The Pareto optimal theory has for instance been applied to

solve a shape optimization problem of an inductor [13]. The Pareto method has proved to be efficient but

needed on the other hand an extremely large number of direct model runs [13]. Gradient-type methods,

based upon a local differentiation study of the objective function, are more interesting since they usually

converge much more quickly [36] but, on the other hand, the direct model has to be differentiated. The

objective function being calculated through the resolution of a discretized direct problem, it is highly

preferable to differentiate the discretized direct model rather than the continuous one [37,38]. The direct
differentiation of the discretized induction heating model has been performed by [12] in the case of a

steady-state electromagnetic model coupled to a transient heat transfer model and by [19] in the case of a

coupled transient model. Very good comparative studies between the direct differentiation and the use of

the adjoint theory (Lagrangian) show that, when dealing with full coupled nonlinear problems, the latter

method becomes interesting when the number of functionals for which design sensitivities are needed is

less than the number of design parameters [39–41]. Next, it is well known [42] that Lagrangian methods

are well suited when there is no explicit dependence of state variables – involved in the objective function

– and the controls. That are the main reasons why the adjoint method has been preferred. It can be
introduced through various approaches. We shall introduce it here using the Lagrangian approach. The

classical general method when dealing with a single system of equations can be found in various books

such as [43,44] and is developed here for both considered coupled systems. We define the Lagrangian of

the problem (36) as

Lðu;E; T ; k; lÞ ¼ JðuÞ þ hReðE; uÞ; kiXe�½t0;tf � þ hRtðE; T Þ; liXt�½t0;tf �; ð37Þ

where variables k and l are adjoint variables and where scalar products are defined as

hu; viX�½t0;tf � ¼
Z tf

t0

Z
X
uv dr dt: ð38Þ

Domains of study Xe and Xt (resp. for the electromagnetic and the heat transfer models) being included in
the domain X, the Lagrangian quantity can writes

Lðu;E; T ; k; lÞ ¼ JðuÞ þ hReðE; uÞ; kiX�½t0;tf � þ hRtðE; T Þ; liX�½t0;tf �: ð39Þ

We shall now prove that a necessary condition for u to be solution of (36) is that there exists a set ðE; T ; k; lÞ
such that ðu;E; T ; k; lÞ is a saddle point of L. Indeed, the necessary condition writes

J 0ðuÞ ¼ 0: ð40Þ

Let us show that this condition is equivalent to

9ðE; T ; k; lÞ; oL
ou

ð�Þ ¼ oL
oE

ð�Þ ¼ oL
oT

ð�Þ ¼ oL
ok

ð�Þ ¼ oL
ol

ð�Þ ¼ 0: ð41Þ

Let first E and T verify, respectively, ðoL=okÞð�Þ ¼ 0 and ðoL=olÞð�Þ ¼ 0, i.e.,

ReðE; uÞ ¼ 0; RtðE; T Þ ¼ 0 8t 2 ½t0; tf �: ð42Þ

Lagrangian derivation writes

oL
ou

ðu;E; T ; k; lÞ ¼ oJ
ou

þ k;
oRe

ou

� �
X�½t0;tf �

: ð43Þ
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Differentiation of (32) gives

oRe

ou
¼ � oRe

oE
oE
ou

;

oRt

ou
¼ � oRt

oE
oE
ou

� oRt

oT
oT
ou

:

ð44Þ

So, (43) becomes

oL
ou

¼ oJ
ou

� k;
oRe

oE
oE
ou

� �
X�½t0;tf �

� l;
oRt

oE
oE
ou

�
þ oRt

oT
oT
ou

�
X�½t0;tf �

: ð45Þ

Let now adjoint variables k and l verify, respectively

k;
oRe

oE
oE
ou

� �
X�½t0;tf �

þ l;
oRt

oE
oE
ou

� �
X�½t0;tf �

¼ 0;

oJ
oT

;
oT
ou

� �
X�½t0;tf �

þ l;
oRt

oT
oT
ou

� �
X�½t0;tf �

¼ 0;
ð46Þ

which is equivalent for adjoint variables k and l to verify, respectively, ðoL=oEÞð�Þ ¼ 0 and ðoL=oT Þð�Þ ¼ 0.
Eq. (45) thus becomes

oL
ou

ð�Þ ¼ oJ
ou

þ oJ
oT

;
oT
ou

� �
X�½t0;tf �

¼ J 0ðuÞ: ð47Þ

3.3. The adjoint problem

We recall here that the objective function gradient (43) is valid only when adjoint variables k and l are
such that scalar expressions in (46) are satisfied within the whole time range ½t0tf �. The aim of the La-

grangian procedure is to get on one side of all scalar products all derivations of state variables with respect
to the controls in order to avoid computing them. To do so, here is given the method to employ. One first

expand both equations in (46) using (21)–(24)

k;Ce o

ot
oE
ou

� �
X�½t0;tf �

þ k;Ke oE
ou

� �
X�½t0;tf �

þ l;
oBt

oE
oE
ou

� �
X�½t0;tf �

¼ 0;

oJ
oT

;
oT
ou

� �
X�½t0;tf �

þ l;Ct o

ot
oT
ou

� �
X�½t0;tf �

þ l;Kt oT
ou

� �
X�½t0;tf �

¼ 0;
ð48Þ

where all involved operators have been detailed in Section 2.3 – except for the last term in the first equation

of (48) which is given explicitly by

oBt

oE

� �
ij

¼ ofBtgi
oEj

¼
Pnb:elt

elt¼1
R
elt 2rENi dr if i ¼ j

0 else:

�
ð49Þ

In order to separate differentiations of state variables with respect to control parameters, the time

integration is performed on (48), using the fact that operators Ce, Ke, Ct and Kt are self-adjoint

(symmetric matrices) while the time derivative operator o � =ot is antisymmetric. System (48) thus

becomes
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� Ce ok
ot

;
oE
ou

� �
X�½t0;tf �

þ Cekðtf Þ;
oE
ou

ðtf Þ
� �

X

� Cekðt0Þ;
oE
ou

ðt0Þ
� �

X

þ Kek;
oE
ou

� �
X�½t0;tf �

þ oBt

oE
l;
oE
ou

� �
X�½t0;tf �

¼ 0;

� Ct ol
ot

;
oT
ou

� �
X�½t0;tf �

þ Ctlðtf Þ;
oT
ou

ðtf Þ
� �

X

� Ctlðt0Þ;
oT
ou

ðt0Þ
� �

X

þ Ktl;
oT
ou

� �
X�½t0;tf �

þ oJ
oT

;
oT
ou

� �
X�½t0;tf �

¼ 0:

ð50Þ

The adjoint problem consists then in calculating k ¼ kðr; tÞ; l ¼ lðr; tÞ that satisfy (51) with initial condi-
tions defined at time tf given in (52):

�Ce ok
ot þ Kek þ oBt

oE l ¼ 0
�Ct ol

ot þ Ktl þ oJ
oT ¼ 0

8t 2 ½t0; tf �;
�

ð51Þ

Cekðtf Þ ¼ 0;

Ctlðtf Þ þ
oJ
oT

ðtf Þ ¼ 0:
ð52Þ

Taking into account of the objective function definition (35), the derivation of the objective function with

respect to temperature writes at node i and time tk

oJ
oT

ðtkÞ
� �

i

¼
Pnb:elt

elt¼1
Pnb:int

if int2XoptðtkÞ
int¼1 ðT ðrint; tk; uÞ � T optðrint; tkÞÞxintNi if nk ¼ 1;

0 else;

(
ð53Þ

where base functions Ni are previously defined in Section 2.3. Next, the loading component involved in the

first equation of (51) writes explicitly at node i

oBt

oE
l

� �
i

¼
Xnb:elt
elt¼1

Z
elt
2rElNi dr: ð54Þ

Due to the sign change on the time operator, both equations involved in (51) have to be integrated

backward in time in order to be well posed. Defining a new time variable s ¼ tf � t, both adjoint equations
have to be solved forward from s ¼ 0 to tf [33] with thermal discretization that follows sn ¼ tf � n � dt.
Moreover, in order for the adjoint problem to be perfectly coherent with its direct model, the ultra-weak

coupling strategy related to the direct model (33) as well as the time integration scheme (Section 2.4) are
transposed to the adjoint. Condensing linear adjoint equations as in (33), we get to solve (55). When more

features are integrated within the direct model, the transposition to the adjoint problem must follow.

Transposition for more complicated direct models are presented in [45]

8k ¼ 1;K Rl T K�k; lK�kð Þ ¼ 0
Rk EN�n; T K�k; lK�k; kN�n� �

¼ 0 8n ¼ 1;N :

�
ð55Þ

3.4. The objective function gradient

The objective function gradient being given in (43) and (47), one needs to calculate the scalar product

involved in (43). The calculation of the adjoint variable k is done through the adjoint problem resolution
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detailed in Section 3.3. The derivation of the electromagnetic system of equations with respect to controls

remains. When controls are continuous, exact analytical derivations are preferred whereas when controls

are not sufficiently continuous, one may rather use semi-analytical derivations. Frequency f and current

density J0 being continuous control parameters, one can derive analytically the electromagnetic residual Re

with respect to both controls. This gives explicitly, at node i and time tk, using the same assembling pro-
cedure as for (22):

oRe

oJ0
ðtkÞ

� �
i

¼ oBe

oJ0
ðtkÞ

� �
i

¼
Xnb:elts
elt¼1

Z
elt
�2pf cosð2pftkÞNi ds; ð56Þ

oRe

of
ðtkÞ

� �
i

¼
Xnb:elts
elt¼1

Z
elt
ð�2pJ0 cosð2pftkÞ þ 4p2J0ftk sinð2pftkÞÞNi ds: ð57Þ

As previously explained in Section 2.5, the inductors are moved virtually and incrementally through a
continuous change of physical properties and location of electromagnetic source terms. Thus, due to the

space discretization, the electromagnetic residual is no longer continuous with respect to the inductor

velocity. One way to handle this difficulty when differentiating the electromagnetic problem Re with respect

to the velocity v is to use semi-analytical derivations which is a compromise between analytical and local
finite difference approaches. This approach has been used in various other areas for instance by [46,47]. Let

d be a dimensionless perturbation parameter applied on the velocity v. Then, depending on the current
value v

oRe

ov

� �
¼

ReðE;f ;J0;ð1þdÞvÞ�ReðE;f ;J0;vÞ
d�v if v 6¼ 0;

ReðE;f ;J0;dÞ�ReðE;f ;J0;0Þ
d else:

(
ð58Þ

Since electromagnetic equilibrium is reached whatever t, previous relation writes

oRe

ov

� �
¼

ReðE;f ;J0;ð1þdÞvÞ
d�v if v 6¼ 0;

ReðE;f ;J0;dÞ
d else:

(
ð59Þ

This vector is assembled using the same assembling procedure as for the direct electromagnetic compu-

tation and also at the same times. A proper choice for the perturbation coefficient d is not trivial. In
general, the lowest the perturbation coefficient, the more accurate the calculated residual gradient is.

Nevertheless, due to round-off calculations and especially due to the meshing which is obviously not

continuous in space, one has to choose a perturbation coefficient d such that space area differences between
perturbed and non-perturbed locations of moving inductors share at least several integration points within
the global mesh. Eventually, if the control vector u ¼ tðf ; J0; vÞ is considered, the objective function gra-
dient writes (60)

ruJ ¼
t

k;
oRe

of

� �
X� t0;tf½ �

; k;
oRe

oJ0

� �
X� t0;tf½ �

; k;
oRe

ov

� �
X� t0;tf½ �

 !
; ð60Þ

with the adjoint variable k given by the adjoint problem resolution (55), and right-hand side vectors

calculated, respectively, by (56), (57) and (59). Since the adjoint variable k is calculated only on one
electromagnetic period per thermal interval, one introduces the scalar v defined as the ratio between the
thermal time step jtk � tk�1j and the electromagnetic period s. The objective function gradient thus
writes
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ruJ ¼ v �
XK
k¼1

t k;
oRe

of

� �
X� tk�1;tk�1þs½ �

; k;
oRe

oJ0

� �
X� tk�1;tk�1þs½ �

; k;
oRe

ov

� �
X� tk�1;tk�1þs½ �

 !
: ð61Þ

3.5. The global optimization problem resolution

The determination of the objective function gradient enables to use gradient-type methods. Given an
initial set of controls u0, one builds a series defined by

uk ¼ uk�1 þ akdk; ð62Þ

where dk is the direction of descent and ak is the descent step size. At each iteration k the direction of

descent dk can be computed in various ways. The simplest method consists in choosing the so-called steepest
descent [14] where

dk ¼ �ruk J : ð63Þ

The main disadvantage of using the greatest slope algorithm comes from its low convergence as uk gets close
to the minimum [36,50,51]. In order to avoid erratic characteristics of steepest descent methods, an al-

ternative consists in developing a conjugate gradient method applied on arbitrary functions. The best-

known methods are the Fletcher and Reeves�s [52] and the Polak–Ribi�eere�s [53]. These methods are known
to be very interesting, on one hand because they require storage of very little information (when compared

to Newton or quasi-Newton methods [51]) and because their rate of convergence are very superior to that

of ordinary gradient methods. The descent direction is calculated as follows:

dk ¼ �ruk J if k ¼ 1;
dk ¼ �ruk J þ bkdk�1 else;

ð64Þ

where bk is chosen such that dk is conjugated with respect to dk�1. The used Polak–Ribi�eere method uses

bk ¼
0 if k ¼ 0;
rJðukÞ;rJðukÞ�rJðuk�1Þh i

rJðuk�1Þ;rJðuk�1Þh i else:

(
ð65Þ

Conjugate gradient methods are widely used in practice [33,54]. Eventually, the determination of an op-

timal descent step size is performed through the resolution of

ak ¼ ArgMin
a

j uk�1
�

þ adk
�
: ð66Þ

The resolution of problem (66) which is nothing more than the minimization of an application from R into

R may be very time expensive since it needs, for the nonlinear model, several evaluations of J and thus

several integrations of the direct model. Optimization codes libraries as presented in [48] for instance are

widely used. The linear research algorithm which has been chosen relies on a dichotomial research coupled
to a parabolic interpolation [19,49].

At each iteration k, the optimization procedure consists in, with a set of controls uk,
1. integrating the objective function value (35) through the integration of the forward nonlinear direct

model (32); store all state variables;

2. integrating the backward linear adjoint problem (55) with initial condition (52), all matrices being re-

computed from stored state variables;

3. calculating the objective function gradient (60), the direction of descent (64);

4. solving the linear research algorithm (66) through several integrations of the nonlinear direct model.
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This global optimization procedure is run until convergence criteria are reached. For the considered

optimization problem, criteria are based on the objective function value, its evolution and its gradient

JðukÞ6 v1;

Jðuk�1Þ � JðukÞ6 v2;

ruk JðukÞ
�� ��6 v3;

ð67Þ

where the choice for vi; i ¼ 1; . . . ; 3; may be adjusted depending on whether a fine or a rough (for ini-
tialization for instance) optimization procedure is performed. In a practical point of view, it is not easy to

choose v1 since it is to be chosen in accordance with the considered optimization problem. Thus, con-
vergence criteria has been preferred [43] rather than on the functional value itself, this latter criterion being

rather used when dealing with inverse analysis problems [55,56].

4. Numerical optimization results

Different process controls have been tested. For the sake of clarity, we have kept the same geometry for

all cases. We present in Figs. 6 and 7 the used geometry [32] and the related mesh. The physical parameters

of the magnetic EN3 steel billet are the following [32]. The relative magnetic permeability equals 90 at 0 K,

with a temperature sensitivity of 6 (see formulation in [19]). The electrical conductivity equals 3:6 MS m�1

at 0 �C, 1 MS m�1 at 700 �C, and 0:7 MS m�1 at 1200 �C. The thermal conductivity equals 45 W m�1 K�1

at 0 �C, 42 W m�1 K�1 at 400 �C, 34 W m�1 K�1 at 700 �C, 27 W m�1 K�1 at 800 �C and 30 W m�1 K�1 at

1200 �C. The heat capacity equals 3:7 Mj m�3 K�1 at 0 �C, 6 Mj m�3 K�1 at 700 �C, 13:5 Mj m�3 K�1 at

770 �C, 5:2 Mj m�3 K�1 at 800 �C and 5:7 Mj m�3 K�1 at 1200 �C. The heat transfer problem is computed
only in the part to be heated (Xt ¼ Xpart). Since the part is insulated as shown in Fig. 6, a null flux is

Fig. 6. Used geometry. Main characteristics are: billet height – 120 mm; number of layers for copper windings – 3; number of turns on

inner layer – 55; number of turns on middle layer – 54; number of turns on outer layer – 55; diameter of copper wire – 2 mm; length of

coil on former – 117 mm.
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prescribed on the external surface where r ¼ 0:022 m, and a free convection and radiation condition is
prescribed on upper and lower surfaces where z ¼ 0:15 m and z ¼ 0:27 m. Electromagnetic parameters for
the air and copper inductors are taken from [57].

4.1. Test case 1

The first test case consists in reaching, on the surface, within the radius range (0.018 m; 0.022 m) (see

Fig. 7), an average optimal temperature of 1500 �C after 10 s of heating through the control of the
frequency f and the current density J0. Initial guessed frequency f 0 is 500 Hz, and initial current density in
the coil J 00 is 10

9A m�2. The general objective function writes

JðuÞ ¼
Z

Xoptðtf Þ
ðT ðx; tf ; uÞ � T optðx; tf ÞÞ2 dx; ð68Þ

where

u ¼ f ; J0ð Þ 2 Rþ�
� Rþ�; tf ¼ 10 s; T optðx; tf Þ ¼ 1773 K;

Xoptðtf Þ ¼ xðr; zÞ; 0:018 mf 6 r6 0:02 m and 0:15 m6 z6 0:27 mg:

Fig. 7. Mesh used for all test cases and location points A, C and E. Non-presented points B and D are, respectively, in between points

A and C, and C and E.
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The direct electromagnetic and thermal equations (32) are first computed. The objective function (35) is

then calculated along with calculation of the derivation of it with respect to temperature at final time (53).

Linear parabolic adjoint equations (55) are then backward integrated. Figs. 8 and 9 present the backward

evolutions of adjoint variables l and k. Fig. 10 presents evolutions of the calculated process parameters f
and J0 with respect to iterations k, and Fig. 11 presents the evolution of the decreasing objective function
value JðukÞ with k.
Iteration 0 is directly related to the first guessed parameters ðf 0; J 00 Þ. The objective function Jðu0Þ is

calculated, as well as its gradient ru0J . Iterations 1–5 are still related to the first minimization loop, where

Fig. 9. Backward evolution of the adjoint variable kðr; tÞ on locations A, B and C.

Fig. 8. Backward evolution of the adjoint variable lðr; tÞ on locations A, B, C, D and E (see Fig. 7).
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the line search algorithm (66) is running. Then, the gradient is calculated once again. Following iterations

are related to the second and third external loops where objective function and its gradient are calculated

followed again by the line search algorithm. It is to be seen that only 3 objective function gradient cal-

culations and 16 runs of the direct model are needed to decrease the objective function by a factor greater
than 40.

4.2. Test case 2

This second test consists in minimizing the objective function (69). Figs. 12 and 13 present evolutions of

controls uk and of the objective function value JðukÞ with respect to iterations k. Eight iterations are needed
to decrease the functional by a factor 20.

Fig. 11. Objective function value evolution JðukÞ with respect to iterations k.

Fig. 10. Control values uk ¼ fðf k ; Jk
0 Þ 2 Rþ � Rþg evolution with respect to iterations k.
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JðuÞ ¼
Z

Xopt
ðT ðx; t1; uÞ � T optðx; t1ÞÞ2 dx þ

Z
Xopt

ðT ðx; t2; uÞ � T optðx; t2ÞÞ2 dx

þ
Z

Xopt
ðT ðx; tf ; uÞ � T optðx; tf ÞÞ2 dx; ð69Þ

where

u ¼ fðf ; J0Þ 2 Rþ � Rþg; t1 ¼ 2:5 s; t2 ¼ 3:5 s; tf ¼ 5 s;

T optðx; t1Þ ¼ 850 K; T optðx; t2Þ ¼ 1030 K; T optðx; tf Þ ¼ 1273 K;

Xopt ¼ xðr; zÞ; 0:018 mf 6 r6 0:02 m and 0:15 m6 z6 0:27 mg:

Fig. 12. Control values uk ¼ fðf k ; Jk
0 Þ 2 Rþ � Rþg evolution with respect to iterations k.

Fig. 13. Objective function value evolution JðukÞ with respect to iterations k.
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4.3. Test case 3

The sample is heated during 20 s and cooled down freely for 10 s. The present aim is to find optimal

frequency and current density such that the final temperature is as uniform as possible and the closest as

possible to 800 �C. The objective function to be minimizes writes (70). Figs. 14 and 15 present evolutions of
controls uk and of the objective function value JðukÞ with respect to iterations k. Six iterations are needed to
decrease drastically the functional by a factor greater than 100.

JðuÞ ¼
Z

Xopt
ðT ðx; tf ; uÞ � T optðx; tf ÞÞ2 dx; ð70Þ

where

u ¼ ðf ; J0Þ 2 Rþ�
� Rþ; 06 t6 t1

�
; t1 ¼ 20 s; tf ¼ 30 s;

Fig. 14. Control values uk ¼ fðf k ; Jk
0 Þ 2 Rþ � Rþg evolution with respect to iterations k.

Fig. 15. Objective function value evolution JðukÞ with respect to iterations k.
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T optðx; tf Þ ¼ 1073 K; Xopt ¼ Xpart:

4.4. Test case 4

This fourth test case uses the same global geometry as for all previous test cases except that the inductor

is moving along the z-axis as shown in Fig. 16. The aim here is to find u ¼ fðf ; J0; vitÞ 2 Rþ � Rþ � Rþg
such that, after 10 s of heating, the surface between z ¼ 22:5 and z ¼ 24:7 cm (see Fig. 16) is as close as
possible to 850 K. The objective function to be minimized in given by (71). Fig. 17 presents the evolutions,

with respect to iterations, of frequency, input current and coil velocity, and Fig. 18 presents the evolution of

the objective function value. Only eight full calculations are needed for decreasing the objective function by

a factor of almost 100.

Fig. 16. Geometry used in test case 4. The inductor is initially moving at velocity vit0 ¼ 10�2 m s�1.

Fig. 17. Control values uk ¼ fðf k ; Jk
0 ; vit

kÞ 2 Rþ � Rþ � Rþg with respect to iterations k.
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JðuÞ ¼
Z

Xopt
ðT ðx; tf ; uÞ � T optðx; tf ÞÞ2 dx; ð71Þ

where

u ¼ f ; J0; vitð Þ 2 Rþ�
� Rþ � Rþ�; tf ¼ 15 s; T optðx; tf Þ ¼ 850 K;

Xopt ¼ xðr; zÞ; 0:018 mf 6 r6 0:02 m and 0:225 m6 z6 0:247 mg

5. Conclusion

A complete optimization model coupling electromagnetism and heat transfer phenomena has been

presented. It is based on a gradient-type method related to an ultra-weak coupling between both non-

linear time-dependent problems, and thus enables dealing with magnetic materials very accurately. Nu-

merical optimization tests performed on various distinct objective functions have shown the efficiency and
the robustness of the proposed method where only several iterations are needed to find optimality

conditions.

So far, all control parameters have been taken constant in time. A direct extension of the proposed

adjoint method consists in finding time-dependent optimal control parameters. From the algorithmic point

of view, very little development is of concern since just the time integration definition domain has to be

changed in the scalar product (43) and thus in (60). Nevertheless, this should lead to an infinity of opti-

mality solutions especially when dealing with functionals defined at final time. Therefore, inequality con-

straints on process parameters will have to be added along with a supplementary term related to control
parameters evolutions added to the objective function. This method has proved its efficiency in other

domains as in the control of ultrasound heating [14].

In the same spirit, realistic thermo-electromagnetic processes simulations often need a very fine mesh on

magnetic piece surfaces. To deal with such cases, the global optimization procedure has been parallelized

through the single program multiple domains (SPMDs) method [58]. In order to save again on time

Fig. 18. Objective function value evolution JðukÞ with respect to iterations k.
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computation, the next step may be to use the ultra-weak variational formulation (UWVF) applied on the

electromagnetic space discretization instead of the finite element approach [59,60]. Though this new method

will drastically change the direct model space discretization, derivation of the direct model being performed

on the discretized problem, the whole proposed adjoint method will remain unchanged.
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